Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell Rep ; 43(4): 114041, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38573857

RESUMEN

CD24 is frequently overexpressed in ovarian cancer and promotes immune evasion by interacting with its receptor Siglec10, present on tumor-associated macrophages, providing a "don't eat me" signal that prevents targeting and phagocytosis by macrophages. Factors promoting CD24 expression could represent novel immunotherapeutic targets for ovarian cancer. Here, using a genome-wide CRISPR knockout screen, we identify GPAA1 (glycosylphosphatidylinositol anchor attachment 1), a factor that catalyzes the attachment of a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins, as a positive regulator of CD24 cell surface expression. Genetic ablation of GPAA1 abolishes CD24 cell surface expression, enhances macrophage-mediated phagocytosis, and inhibits ovarian tumor growth in mice. GPAA1 shares structural similarities with aminopeptidases. Consequently, we show that bestatin, a clinically advanced aminopeptidase inhibitor, binds to GPAA1 and blocks GPI attachment, resulting in reduced CD24 cell surface expression, increased macrophage-mediated phagocytosis, and suppressed growth of ovarian tumors. Our study highlights the potential of targeting GPAA1 as an immunotherapeutic approach for CD24+ ovarian cancers.


Asunto(s)
Aciltransferasas , Antígeno CD24 , Neoplasias Ováricas , Fagocitosis , Animales , Femenino , Humanos , Ratones , Aciltransferasas/metabolismo , Amidohidrolasas/metabolismo , Amidohidrolasas/genética , Antígeno CD24/metabolismo , Línea Celular Tumoral , Glicosilfosfatidilinositoles/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/terapia
2.
Geroscience ; 45(1): 141-158, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35705837

RESUMEN

Although aging is the biggest risk factor for human chronic (cancer, diabetic, cardiovascular, and neurodegenerative) diseases, few interventions are known besides caloric restriction and a small number of drugs (with substantial side effects) that directly address aging. Thus, there is an urgent need for new options that can generally delay aging processes and prevent age-related diseases. Cellular aging is at the basis of aging processes. Chronological lifespan (CLS) of yeast Saccharomyces cerevisiae is the well-established model system for investigating the interventions of human post-mitotic cellular aging. CLS is defined as the number of days cells remain viable in a stationary phase. We developed a new, cheap, and fast quantitative method for measuring CLS in cell cultures incubated together with various chemical agents and controls on 96-well plates. Our PICLS protocol with (1) the use of propidium iodide for fluorescent-based cell survival reading in a microplate reader and (2) total cell count measurement via OD600nm absorption from the same plate provides real high-throughput capacity. Depending on logistics, large numbers of plates can be processed in parallel so that the screening of thousands of compounds becomes feasible in a short time. The method was validated by measuring the effect of rapamycin and calorie restriction on yeast CLS. We utilized this approach for chemical agent screening. We discovered the anti-aging/geroprotective potential of 2,5-anhydro-D-mannitol (2,5-AM) and suggest its usage individually or in combination with other anti-aging interventions.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Saccharomyces cerevisiae , Humanos , Manitol/farmacología , Envejecimiento , Senescencia Celular
3.
Cells ; 11(5)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269484

RESUMEN

Aging is the greatest challenge to humankind worldwide. Aging is associated with a progressive loss of physiological integrity due to a decline in cellular metabolism and functions. Such metabolic changes lead to age-related diseases, thereby compromising human health for the remaining life. Thus, there is an urgent need to identify geroprotectors that regulate metabolic functions to target the aging biological processes. Nutrients are the major regulator of metabolic activities to coordinate cell growth and development. Iron is an important nutrient involved in several biological functions, including metabolism. In this study using yeast as an aging model organism, we show that iron supplementation delays aging and increases the cellular lifespan. To determine how iron supplementation increases lifespan, we performed a gene expression analysis of mitochondria, the main cellular hub of iron utilization. Quantitative analysis of gene expression data reveals that iron supplementation upregulates the expression of the mitochondrial tricarboxylic acid (TCA) cycle and electron transport chain (ETC) genes. Furthermore, in agreement with the expression profiles of mitochondrial genes, ATP level is elevated by iron supplementation, which is required for increasing the cellular lifespan. To confirm, we tested the role of iron supplementation in the AMPK knockout mutant. AMPK is a highly conserved controller of mitochondrial metabolism and energy homeostasis. Remarkably, iron supplementation rescued the short lifespan of the AMPK knockout mutant and confirmed its anti-aging role through the enhancement of mitochondrial functions. Thus, our results suggest a potential therapeutic use of iron supplementation to delay aging and prolong healthspan.


Asunto(s)
Hierro , Longevidad , Proteínas Quinasas Activadas por AMP/metabolismo , Envejecimiento/metabolismo , Suplementos Dietéticos , Humanos , Hierro/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
Free Radic Biol Med ; 138: 10-22, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31047989

RESUMEN

The vancomycin-resistant Enterococcus faecalis alkyl hydroperoxide reductase complex (AhpR) with its subunits AhpC (EfAhpC) and AhpF (EfAhpF) is of paramount importance to restore redox homeostasis. Therefore, knowledge about this defense system is essential to understand its antibiotic-resistance and survival in hosts. Recently, we described the crystallographic structures of EfAhpC, the two-fold thioredoxin-like domain of EfAhpF, the novel phenomenon of swapping of the catalytic domains of EfAhpF as well as the unique linker length, connecting the catalytically active N-and C-terminal domains of EfAhpF. Here, using mutagenesis and enzymatic studies, we reveal the effect of an additional third cysteine (C503) in EfAhpF, which might optimize the functional adaptation of the E. faecalis enzyme under various physiological conditions. The crystal structure and solution NMR data of the engineered C503A mutant of the thioredoxin-like domain of EfAhpF were used to describe alterations in the environment of the additional cysteine residue during modulation of the redox-state. To glean insight into the epitope and mechanism of EfAhpF and -AhpC interaction as well as the electron transfer from the thioredoxin-like domain of EfAhpF to AhpC, NMR-titration experiments were performed, showing a coordinated disappearance of peaks in the thioredoxin-like domain of EfAhpF in the presence of full length EfAhpC, and indicating a stable EfAhpF-AhpC-complex. Combined with docking studies, the interacting residues of EfAhpF were identified and a mechanism of electron transfer of the EfAhpF donor to the electron acceptor EfAhpC is described.


Asunto(s)
Proteínas Bacterianas/química , Enterococcus faecalis/química , Peroxirredoxinas/química , Subunidades de Proteína/química , Alanina/química , Alanina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Cisteína/química , Cisteína/metabolismo , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Vancomicina/farmacología , Resistencia a la Vancomicina/genética
5.
Sci Rep ; 8(1): 14151, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237544

RESUMEN

Peroxiredoxins (Prxs) are ubiquitous antioxidants utilizing a reactive cysteine for peroxide reduction and acting as a molecular chaperone under various stress conditions. Besides other stimulating factors, oxidative- and heat stress conditions trigger their ATP-independent chaperoning function. So far, many studies were intended to reveal the chaperoning mechanisms of the so-called sensitive Prxs of eukaryotes, which are susceptible to inactivation by over-oxidation of its reactive cysteine during H2O2 reduction. In contrast, the chaperone mechanisms of bacterial Prxs, which are mostly robust against inactivation by over-oxidation, are not well understood. Herein, comprehensive biochemical and biophysical studies demonstrate that the Escherichia coli alkyl hydroperoxide reductase subunit C (EcAhpC) acquires chaperone activity under heat stress. Interestingly, their chaperoning activity is independent of its redox-states but is regulated in a temperature-dependent manner. Data are presented, showing that oxidized EcAhpC, which forms dimers at 25 °C, self-assembled into high molecular weight (HMW) oligomers at higher temperatures and supressed aggregation of client proteins at heat-shock conditions. In addition, we unravelled the essential role of the C-terminal tail of EcAhpC on heat-induced HMW oligomer formation and chaperoning activity. Our findings suggest a novel molecular mechanism for bacterial Prxs to function as chaperone at heat-shock conditions.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Respuesta al Choque Térmico/fisiología , Chaperonas Moleculares/metabolismo , Peroxirredoxinas/metabolismo , Escherichia coli/metabolismo , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Temperatura
6.
BMC Cancer ; 18(1): 555, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29751792

RESUMEN

BACKGROUND: Single Nucleotide Polymorphisms (SNPs) can influence patient outcome such as drug response and toxicity after drug intervention. The purpose of this study is to develop a systematic pathway approach to accurately and efficiently predict novel non-synonymous SNPs (nsSNPs) that could be causative to gemcitabine-based chemotherapy treatment outcome in Singaporean non-small cell lung cancer (NSCLC) patients. METHODS: Using a pathway approach that incorporates comprehensive protein-protein interaction data to systematically extend the gemcitabine pharmacologic pathway, we identified 77 related nsSNPs, common in the Singaporean population. After that, we used five computational criteria to prioritize the SNPs based on their importance for protein function. We specifically selected and screened six candidate SNPs in a patient cohort with NSCLC treated with gemcitabine-based chemotherapy. RESULT: We performed survival analysis followed by hematologic toxicity analyses and found that three of six candidate SNPs are significantly correlated with the patient outcome (P < 0.05) i.e. ABCG2 Q141K (rs2231142), SLC29A3 S158F (rs780668) and POLR2A N764K (rs2228130). CONCLUSIONS: Our computational SNP candidate enrichment workflow approach was able to identify several high confidence biomarkers predictive for personalized drug treatment outcome while providing a rationale for a molecular mechanism of the SNP effect. TRIAL REGISTRATION: NCT00695994. Registered 10 June, 2008 'retrospectively registered'.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Neoplasias Pulmonares/tratamiento farmacológico , Adulto , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Estudios de Cohortes , Desoxicitidina/uso terapéutico , Femenino , Genotipo , Técnicas de Genotipaje , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Masculino , Polimorfismo de Nucleótido Simple , Medicina de Precisión/métodos , Singapur/epidemiología , Análisis de Supervivencia , Resultado del Tratamiento , Adulto Joven , Gemcitabina
7.
Free Radic Biol Med ; 118: 59-70, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29474868

RESUMEN

Peroxiredoxins (Prxs) catalyse the rapid reduction of hydrogen peroxide, organic hydroperoxide and peroxynitrite, using a fully conserved peroxidatic cysteine (CP) located in a conserved sequence Pxxx(T/S)xxCP motif known as CP-loop. In addition, Prxs are involved in cellular signaling pathways and regulate several redox-dependent process related disease. The effective catalysis of Prxs is associated with alterations in the CP-loop between reduced, Fully Folded (FF), and oxidized, Locally Unfolded (LU) conformations, which are linked to dramatic changes in the oligomeric structure. Despite many studies, little is known about the precise structural and dynamic roles of the CP-loop on Prxs functions. Herein, the comprehensive biochemical and biophysical studies on Escherichia coli alkyl hydroperoxide reductase subunit C (EcAhpC) and the CP-loop mutants, EcAhpC-F45A and EcAhpC-F45P reveal that the reduced form of the CP-loop adopts conformational dynamics, which is essential for effective peroxide reduction. Furthermore, the point mutants alter the structure and dynamics of the reduced form of the CP-loop and, thereby, affect substrate binding, catalysis, oligomerization, stability and overoxidiation. In the oxidized form, due to restricted CP-loop dynamics, the EcAhpC-F45P mutant favours a decamer formation, which enhances the effective recycling by physiological reductases compared to wild-type EcAhpC. In addition, the study reveals that residue F45 increases the specificity of Prxs-reductase interactions. Based on these studies, we propose an evolution of the CP-loop with confined sequence conservation within Prxs subfamilies that might optimize the functional adaptation of Prxs into various physiological roles.


Asunto(s)
Modelos Moleculares , Peroxirredoxinas/química , Catálisis , Dominio Catalítico/fisiología , Cisteína/química , Escherichia coli , Oxidación-Reducción , Conformación Proteica
8.
Biol Direct ; 13(1): 2, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29433547

RESUMEN

BACKGROUND: Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have specifically singled out the Zip's law, the observed distributions often deviate from a single power-law slope. In hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite observations, real world observations are finite where the finite-size effects will set in to force a power-law distribution into an exponential decay and consequently, manifests as a curvature (i.e., varying exponent values) in a log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing mathematical moments (e.g., mean, variance) and creates heteroskedasticity which compromises statistical rigor in analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly been examined and quantified. RESULTS: The anecdotal description of transcript abundance being almost Zipf's law-like distributed can be conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS (Next-generation sequencing) datasets: an in-house generated dilution miRNA study of two gastric cancer cell lines (NUGC3 and AGS) and a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of sequencing count data from Zipf's law and issues of reproducibility in sequencing experiments. Secondly, it manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a straightforward power-law correction that restores the distribution distortion to a single exponent value can dramatically reduce data heteroskedasticity to invoke an instant increase in signal-to-noise ratio by 50% and the statistical/detection sensitivity by as high as 30% regardless of the downstream mapping and normalization methods. Most importantly, the power-law correction improves concordance in significant calls among different normalization methods of a data series averagely by 22%. When presented with a higher sequence depth (4 times difference), the improvement in concordance is asymmetrical (32% for the higher sequencing depth instance versus 13% for the lower instance) and demonstrates that the simple power-law correction can increase significant detection with higher sequencing depths. Finally, the correction dramatically enhances the statistical conclusions and eludes the metastasis potential of the NUGC3 cell line against AGS of our dilution analysis. CONCLUSIONS: The finite-size effects due to undersampling generally plagues transcript count data with reproducibility issues but can be minimized through a simple power-law correction of the count distribution. This distribution correction has direct implication on the biological interpretation of the study and the rigor of the scientific findings. REVIEWERS: This article was reviewed by Oliviero Carugo, Thomas Dandekar and Sandor Pongor.


Asunto(s)
Modelos Teóricos , Animales , Línea Celular Tumoral , Humanos , MicroARNs/genética
9.
Bioessays ; 39(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28885709

RESUMEN

Intracellular bacteria were recently shown to employ eukaryotic prenylation system for modifying activity and ensuring proper intracellular localization of their own proteins. Following the same logic, the proteins of viruses may also serve as prenylation substrates. Using extensively validated high-confidence prenylation predictions by PrePS with a cut-off for experimentally confirmed farnesylation of hepatitis delta virus antigen, we compiled in silico evidence for several new prenylation candidates, including IRL9 (CMV) and few other proteins encoded by Herpesviridae, Nef (HIV-1), E1A (human adenovirus 1), NS5A (HCV), PB2 (influenza), HN (human parainfluenza virus 3), L83L (African swine fever), MC155R (molluscum contagiosum virus), other Poxviridae proteins, and some bacteriophages of human associated bacteria. If confirmed experimentally, these findings may aid in dissection of molecular functions of uncharacterized viral proteins and provide a novel rationale for statin and FT/GGT1-based inhibition of viral infections. Prenylation of bacteriophage proteins may aid in moderation of microbial infections.


Asunto(s)
Proteínas Virales/metabolismo , Adenoviridae/metabolismo , Bacteriófagos/metabolismo , Herpesviridae/metabolismo , Humanos , Prenilación
10.
BMC Biol ; 15(1): 66, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28738801

RESUMEN

BACKGROUND: Transmembrane helices (TMHs) frequently occur amongst protein architectures as means for proteins to attach to or embed into biological membranes. Physical constraints such as the membrane's hydrophobicity and electrostatic potential apply uniform requirements to TMHs and their flanking regions; consequently, they are mirrored in their sequence patterns (in addition to TMHs being a span of generally hydrophobic residues) on top of variations enforced by the specific protein's biological functions. RESULTS: With statistics derived from a large body of protein sequences, we demonstrate that, in addition to the positive charge preference at the cytoplasmic inside (positive-inside rule), negatively charged residues preferentially occur or are even enriched at the non-cytoplasmic flank or, at least, they are suppressed at the cytoplasmic flank (negative-not-inside/negative-outside (NNI/NO) rule). As negative residues are generally rare within or near TMHs, the statistical significance is sensitive with regard to details of TMH alignment and residue frequency normalisation and also to dataset size; therefore, this trend was obscured in previous work. We observe variations amongst taxa as well as for organelles along the secretory pathway. The effect is most pronounced for TMHs from single-pass transmembrane (bitopic) proteins compared to those with multiple TMHs (polytopic proteins) and especially for the class of simple TMHs that evolved for the sole role as membrane anchors. CONCLUSIONS: The charged-residue flank bias is only one of the TMH sequence features with a role in the anchorage mechanisms, others apparently being the leucine intra-helix propensity skew towards the cytoplasmic side, tryptophan flanking as well as the cysteine and tyrosine inside preference. These observations will stimulate new prediction methods for TMHs and protein topology from a sequence as well as new engineering designs for artificial membrane proteins.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/química , Modelos Moleculares , Dominios Proteicos , Proteínas de la Membrana/metabolismo , Conformación Proteica
11.
J Natl Cancer Inst ; 109(12)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30053080

RESUMEN

Background: Radioactive iodine (RAI) is the mainstay of treatment for differentiated thyroid carcinoma (DTC). Nevertheless, the mechanism of RAI resistance that occurs in many patients with DTC remains unknown. We aimed to elucidate the role of post-translational regulation of radioiodine uptake. Methods: We analyzed the expression pattern of the ribosomal glycosylphosphatidylinositol transamidase (GPIT) complex in freshly excised tumors from 10 patients with DTC. We used functional RAI uptake assays to assess the role of GPIT in iodine uptake both in vivo and in vitro. The effects of MEK inhibition on the GPIT subunit PIGU and the sodium iodide symporter (NIS) were assessed in three DTC cell lines and in four human DTC biopsies. We used a multivariable logistic regression model to study the role of PIGU in the response to RAI treatment in advanced DTC. All statistical tests were two-sided. Results: Expression profiling of different GPIT complex subunits revealed statistically significantly lower expression of PIGU in papillary carcinomas than in matched normal thyroid tissue (P < .001). Expression of PIGU in the K1 human papillary carcinoma cell line resulted in a robust increase in NIS glycosylation and trafficking to the cell membrane, accompanied by a robust increase in I125 uptake both in vitro (465 200 ± 56 343 vs 1236 ± 156 counts per million, P < .001) and in vivo (128 945 ± 28 556 vs 7963 ± 192 counts per million, P < .001, n = 5 mice per group). Treatment with the MEK inhibitors U0126 and PD302 rescued PIGU expression. Finally, the PIGU expression levels in tumors of 18 patients with recurrent DTC were associated with a biochemical response to RAI treatment (hazard ratio = 8.06, 95% confidence interval = 3.72 to 12.3, P = .001). Conclusions: We showed that downregulation of PIGU in DTC determines NIS function and RAI avidity. This represents a novel mechanism for RAI resistance.


Asunto(s)
Aciltransferasas/metabolismo , Carcinoma Papilar/patología , Radioisótopos de Yodo/uso terapéutico , Procesamiento Proteico-Postraduccional , Tolerancia a Radiación , Simportadores/metabolismo , Neoplasias de la Tiroides/patología , Aciltransferasas/genética , Adulto , Anciano , Carcinoma Papilar/metabolismo , Carcinoma Papilar/radioterapia , Estudios de Casos y Controles , Femenino , Glicosilación , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/radioterapia , Simportadores/genética , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/radioterapia , Adulto Joven
12.
FEBS J ; 282(23): 4620-38, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26402142

RESUMEN

In bacteria, an ensemble of alkyl hydroperoxide reductase subunits C (AhpC) and F (AhpF) is responsible for scavenging H2O2. AhpC donates electrons for the reduction of H2O2, which are provided after NADH oxidation by AhpF. The latter contains an N-terminal domain (NTD), catalyzing the electron transfer from NADH via a FAD of the C-terminal domain (CTD) into AhpC. The NADH-bound Escherichia coli AhpF structure revealed that NADH binding brings the substrate to the re-face of the FAD, making the Cys-Cys center of the CTD accessible to the NTD disulfide center for electron transfer (Kamariah et al. (2015) Biochim Biophys Acta 1847, 1139-1152). So far insight into the epitope and mechanism of AhpF and AhpC interaction as well as the electron transfer from the NTD to AhpC have been lacking. Here using NMR spectroscopy, we glean insight into the interaction of the NTD of AhpF with AhpC from E. coli. A coordinated disappearance of EcAhpF NTD peaks was observed in the presence of full length EcAhpC, indicating a long-lived AhpC-AhpF complex. C-terminal truncated EcAhpC resulted in a more dynamic interaction, revealing specific residue chemical shift perturbation and hence the binding epitope of the complex. Combined with docking studies, we have suggested that the C terminus of AhpC binds to the backside groove of the NTD. In addition, AhpC-AhpF formation is abolished under reducing conditions. We propose for the first time a binding mechanism in which the C terminus of AhpC wraps around the NTD, slowing the dissociation rate for an efficient electron transfer process, and a release mechanism mediated by the conformational change of the C terminus of AhpC upon reduction.


Asunto(s)
Biocatálisis , Dipéptidos/metabolismo , Escherichia coli/química , Resonancia Magnética Nuclear Biomolecular , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Dipéptidos/química , Escherichia coli/metabolismo
13.
BMC Genomics ; 15 Suppl 9: S20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25521664

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is a major cause of cancer-related death worldwide due to poor patient prognosis and clinical outcome. Here, we studied the genetic variations underlying NSCLC pathogenesis based on their association to patient outcome after gemcitabine therapy. RESULTS: Bioinformatics analysis was used to investigate possible effects of POLA2 G583R (POLA2+1747 GG/GA, dbSNP ID: rs487989) in terms of protein function. Using biostatistics, POLA2+1747 GG/GA (rs487989, POLA2 G583R) was identified as strongly associated with mortality rate and survival time among NSCLC patients. It was also shown that POLA2+1747 GG/GA is functionally significant for protein localization via green fluorescent protein (GFP)-tagging and confocal laser scanning microscopy analysis. The single nucleotide polymorphism (SNP) causes DNA polymerase alpha subunit B to localize in the cytoplasm instead of the nucleus. This inhibits DNA replication in cancer cells and confers a protective effect in individuals with this SNP. CONCLUSIONS: The results suggest that POLA2+1747 GG/GA may be used as a prognostic biomarker of patient outcome in NSCLC pathogenesis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Biología Computacional , ADN Polimerasa I/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Polimorfismo de Nucleótido Simple , Transporte Activo de Núcleo Celular , Adulto , Anciano , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Núcleo Celular/metabolismo , ADN Polimerasa I/química , ADN Polimerasa I/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Femenino , Genotipo , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Pronóstico , Conformación Proteica , Análisis de Supervivencia , Gemcitabina
14.
J Bioinform Comput Biol ; 12(3): 1471002, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24969753

RESUMEN

Remarkably, Singapore as one of today's hotspots for bioinformatics and computational biology research appeared de novo out of pioneering efforts of engaged local individuals in the early 90-s that, supported with increasing public funds from 1996 on, morphed into the present vibrant research community. This article brings to mind the pioneers, their first successes and early institutional developments.


Asunto(s)
Biología Computacional , Humanos , Singapur
15.
Cell Cycle ; 13(12): 1912-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24743167

RESUMEN

The transamidase subunit GAA1/GPAA1 is predicted to be the enzyme that catalyzes the attachment of the glycosylphosphatidyl (GPI) lipid anchor to the carbonyl intermediate of the substrate protein at the ω-site. Its ~300-amino acid residue lumenal domain is a M28 family metallo-peptide-synthetase with an α/ß hydrolase fold, including a central 8-strand ß-sheet and a single metal (most likely zinc) ion coordinated by 3 conserved polar residues. Phosphoethanolamine is used as an adaptor to make the non-peptide GPI lipid anchor look chemically similar to the N terminus of a peptide.


Asunto(s)
Aminoaciltransferasas/metabolismo , Etanolaminas/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Glicoproteínas de Membrana/metabolismo , Péptido Sintasas/metabolismo , Péptidos/química , Subunidades de Proteína/metabolismo , Aminoaciltransferasas/química , Humanos , Glicoproteínas de Membrana/química , Carbonilación Proteica , Subunidades de Proteína/química
16.
Health Inf Sci Syst ; 1: 2, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25825654

RESUMEN

ABSTRACT: The currently hyped expectation of personalized medicine is often associated with just achieving the information technology led integration of biomolecular sequencing, expression and histopathological bioimaging data with clinical records at the individual patients' level as if the significant biomedical conclusions would be its more or less mandatory result. It remains a sad fact that many, if not most biomolecular mechanisms that translate the human genomic information into phenotypes are not known and, thus, most of the molecular and cellular data cannot be interpreted in terms of biomedically relevant conclusions. Whereas the historical trend will certainly be into the general direction of personalized diagnostics and cures, the temperate view suggests that biomedical applications that rely either on the comparison of biomolecular sequences and/or on the already known biomolecular mechanisms have much greater chances to enter clinical practice soon. In addition to considering the general trends, we exemplarily review advances in the area of cancer biomarker discovery, in the clinically relevant characterization of patient-specific viral and bacterial pathogens (with emphasis on drug selection for influenza and enterohemorrhagic E. coli) as well as progress in the automated assessment of histopathological images. As molecular and cellular data analysis will become instrumental for achieving desirable clinical outcomes, the role of bioinformatics and computational biology approaches will dramatically grow. AUTHOR SUMMARY: With DNA sequencing and computers becoming increasingly cheap and accessible to the layman, the idea of integrating biomolecular and clinical patient data seems to become a realistic, short-term option that will lead to patient-specific diagnostics and treatment design for many diseases such as cancer, metabolic disorders, inherited conditions, etc. These hyped expectations will fail since many, if not most biomolecular mechanisms that translate the human genomic information into phenotypes are not known yet and, thus, most of the molecular and cellular data collected will not lead to biomedically relevant conclusions. At the same time, less spectacular biomedical applications based on biomolecular sequence comparison and/or known biomolecular mechanisms have the potential to unfold enormous potential for healthcare and public health. Since the analysis of heterogeneous biomolecular data in context with clinical data will be increasingly critical, the role of bioinformatics and computational biology will grow correspondingly in this process.

17.
BMC Biochem ; 11: 39, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20863412

RESUMEN

BACKGROUND: The LGI2 (leucine-rich, glioma inactivated 2) gene, a prime candidate for partial epilepsy with pericentral spikes, belongs to a family encoding secreted, beta-propeller domain proteins with EPTP/EAR epilepsy-associated repeats. In another family member, LGI1 (leucine-rich, glioma inactivated 1) mutations are responsible for autosomal dominant lateral temporal epilepsy (ADLTE). Because a few LGI1 disease mutations described in the literature cause secretion failure, we experimentally analyzed the secretion efficiency and subcellular localization of several LGI1 and LGI2 mutant proteins corresponding to observed non-synonymous single nucleotide polymorphisms (nsSNPs) affecting the signal peptide, the leucine-rich repeats and the EAR propeller. RESULTS: Mapping of disease-causing mutations in the EAR domain region onto a 3D-structure model shows that many of these mutations co-localize at an evolutionary conserved surface region of the propeller. We find that wild-type LGI2 is secreted to the extracellular medium in glycosylated form similarly to LGI1, whereas several mutant proteins tested in this study are secretion-deficient and accumulate in the endoplasmic reticulum. Interestingly, mutations at structurally homologous positions in the EAR domain have the same effect on secretion in LGI1 and LGI2. CONCLUSIONS: This similarity of experimental mislocalization phenotypes for mutations at homologous positions of LGI2 and the established epilepsy gene LGI1 suggests that both genes share a potentially common molecular pathogenesis mechanism that might be the reason for genotypically distinct but phenotypically related forms of epilepsy.


Asunto(s)
Epilepsias Parciales/genética , Epilepsia del Lóbulo Temporal/genética , Proteínas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mutación Missense , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/clasificación
18.
BMC Genomics ; 11 Suppl 1: S13, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20158870

RESUMEN

BACKGROUND: Tandem mass spectrometry (MS/MS) has become a standard method for identification of proteins extracted from biological samples but the huge number and the noise contamination of MS/MS spectra obstruct swift and reliable computer-aided interpretation. Typically, a minor fraction of the spectra per sample (most often, only a few %) and about 10% of the peaks per spectrum contribute to the final result if protein identification is not prevented by the noise at all. RESULTS: Two fast preprocessing screens can substantially reduce the haystack of MS/MS data. (1) Simple sequence ladder rules remove spectra non-interpretable in peptide sequences. (2) Modified Fourier-transform-based criteria clear background in the remaining data. In average, only a remainder of 35% of the MS/MS spectra (each reduced in size by about one quarter) has to be handed over to the interpretation software for reliable protein identification essentially without loss of information, with a trend to improved sequence coverage and with proportional decrease of computer resource consumption. CONCLUSIONS: The search for sequence ladders in tandem MS/MS spectra with subsequent noise suppression is a promising strategy to reduce the number of MS/MS spectra from electro-spray instruments and to enhance the reliability of protein matches. Supplementary material and the software are available from an accompanying WWW-site with the URL http://mendel.bii.a-star.edu.sg/mass-spectrometry/MSCleaner-2.0/.


Asunto(s)
Péptidos/análisis , Espectrometría de Masas en Tándem/métodos , Internet , Péptidos/química , Factores de Tiempo
19.
Cell Cycle ; 7(23): 3709-19, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19029837

RESUMEN

Evolutionary conservation of N-terminal N-myristoylation within protein families indicates significant functional impact of this lipid posttranslational modification for function. In the MYRbase study (Maurer-Stroh et al., (2004) Genome Biology 5, R21), protein families with relevance to asymmetric cell division in animals and the group of plant calcium-dependent protein kinases (CPKs) have surfaced with many predicted myristoylated members. Here, we describe experimental in vitro verification of predicted myristoylation and explore its impact on subcellular localization for these targets in vivo. Our results confirm that, indeed, Numb isoform A, Neuralized isoforms C and D from Drosophila melanogaster and two Neuralized-like homologues from Mus musculus have the capability for N-terminal myristoylation in vitro and in vivo (in fly tissue and in mouse 3T3 cells respectively) whereas other isoforms such as Neuralized A and B have not. The latter two cases are an examples of different potential of various isoforms for posttranslational modifications. Additionally, the Arabidopsis thaliana CDPKs CPK6, CPK9 and CPK13 are shown to be substrates for myristoylation in vitro, which also affects their subcellular localization (in Arabidopsis protoplasts and tobacco leaves). At the same time, CPK6 and CPK13 do not appear to be substrates of a NMT1-like enzyme; the reasons for differing substrate specificities of NMT homologues in plants are derived from the evolutionary divergence of their N-myristoyl transferase sequences. As a methodical advance, we describe a fast and very sensitive technique (compared to traditional autoradiography) for in vitro testing of myristoylation based on thin layer chromatography read-out of the incorporated radioactive myristoyl anchor with subsequent Western blotting detection for protein yield determination using the same membrane.


Asunto(s)
Arabidopsis/metabolismo , Señalización del Calcio , División Celular , Drosophila melanogaster/metabolismo , Ácido Mirístico/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/citología , Arabidopsis/enzimología , Proteínas de Arabidopsis/química , Cromatografía en Capa Delgada , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Hormonas Juveniles/metabolismo , Larva/citología , Larva/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo , Nicotiana/citología , Nicotiana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
20.
Biol Direct ; 3: 23, 2008 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-18522715

RESUMEN

BACKGROUND: The original spotted array technology with competitive hybridization of two experimental samples and measuring relative expression levels is increasingly displaced by more accurate platforms that allow determining absolute expression values for a single sample (for example, Affymetrix GeneChip and Illumina BeadChip). Unfortunately, cross-platform comparisons show a disappointingly low concordance between lists of regulated genes between the latter two platforms. RESULTS: Whereas expression values determined with a single Affymetrix GeneChip represent single measurements, the expression results obtained with Illumina BeadChip are essentially statistical means from several dozens of identical probes. In the case of multiple technical replicates, the data require, therefore, different stistical treatment depending on the platform. The key is the computation of the squared standard deviation within replicates in the case of the Illumina data as weighted mean of the square of the standard deviations of the individual experiments. With an Illumina spike experiment, we demonstrate dramatically improved significance of spiked genes over all relevant concentration ranges. The re-evaluation of two published Illumina datasets (membrane type-1 matrix metalloproteinase expression in mammary epithelial cells by Golubkov et al. Cancer Research (2006) 66, 10460; spermatogenesis in normal and teratozoospermic men, Platts et al. Human Molecular Genetics (2007) 16, 763) significantly identified more biologically relevant genes as transcriptionally regulated targets and, thus, additional biological pathways involved. CONCLUSION: The results in this work show that it is important to process Illumina BeadChip data in a modified statistical procedure and to compute the standard deviation in experiments with technical replicates from the standard errors of individual BeadChips. This change leads also to an improved concordance with Affymetrix GeneChip results as the spermatogenesis dataset re-evaluation demonstrates. REVIEWERS: This article was reviewed by I. King Jordan, Mark J. Dunning and Shamil Sunyaev.


Asunto(s)
Perfilación de la Expresión Génica/estadística & datos numéricos , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Animales , Simulación por Computador , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Ratones , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polisacáridos/biosíntesis , Transducción de Señal/genética , Espermatozoides/enzimología , Espermatozoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA